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Summary. Ion-carrier complexes and organic ions of similar size and shape have mobilities 
in lipid bilayer membranes which span several orders of magnitude. In this communication, 
an examination is made of the hypothesis that the basis for this unusually wide range of ionic 
mobilities is the potential energy barrier arising from image forces which selectively act on 
ions according to their polarizability. Using Poisson's equation to evaluate the electrostatic 
interaction between an ion and its surroundings, the potential energy barrier to ion transport 
due to image effects is computed, with the result that the potential energy barrier height 
depends strongly on ionic polarizability. 

Theoretical membrane potential energy profile calculations are used in conjunction with 
the Nernst-Planck electrodiffusion equation to analyze the available mobility data for several 
ion-carrier complexes and lipid-soluble ions in lipid bilayer membranes. The variation among 
the mobilities of different ions is shown to be in agreement with theoretical predictions based 
on ionic polarizability and size. Furthermore, the important influence exerted by image 
forces on ion transport in lipid bilayer membranes compared to the frictional effect of membrane 
viscosity is established by contrasting available data on the activation energy of ionic con- 
ductivity with that for membrane fluidity. 
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List  o f  Symbols 

spherical conductor radius 
ionic concentration in the membrane 
ionic concentration in the aqueous solution 
electric field strength/(RT/•L) 
elementary charge 
image force 
activation energy for microviscosity 
activation energy for electrodiffusion 
current flux 
electrodiffusion rate constant for lira ~--,0 defined by J = c k ~ L ~  
modified electrodiffusion rate constant 
membrane width 
arbitrary image charge from one of Eqs. (14)-(17) 
ionic charge 
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gas law constant 
ionic radius 
sum of image charges within spherical conductor 
absolute temperature 
Stokes-Einstein mobility (footnote 1) 
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polarizability 

(~I - -  ~:ll)/(SI -H gll) 
see Fig. 2 
see Fig. 2 
dielectric constant 
permittivity of free space 
radial space coordinate/L 
microviscosity relative to di(18:1)-PC 
see Fig. 2 
ionic charge/e 
constant defined in Eq. (44) 
A/L 
Poisson's equation constant 
axial space coordinate/L 
image charge/e 
space charge density/(e/L 3) 
effective potential energy barrier 
potential energy/RT 
separation distance between an arbitrary charge and a charged spherical con- 
ductor 
electric potential/(R T/~)  
Laplacian 

Script Letters 

Faraday constant 
Stokes-Einstein diffusivity 
L/L{di (18:1)-PC) 

Subscripts 

C 
E 
M , N  
Q 
R 
I, II, III 

chemical 
electrostatic 
image charge indices 
refers to ion (source charge) 
refers to location of ion binding site within the membrane 
dielectric regions 

Superscript 

* denotes maximum potential energy, ~o* 
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Abbreviations 

TPhB- 
DPA-  
CCCP 
egg PC 
di(N: I)-PC 
GMO 
GMER 
CHL 
PI 
PS 
DPPC 
BPE 
PE 

tetraphenylboride anion 
dipicrylamine anion 
carbonylcyanide m-chlorophenylhydrazone anion 
phosphatidyl choline from egg yolk 
diacylphosphatidyl choline of an N-carbon mono-unsaturated fatty acid 
glyceryl monooleate 
glyceryl monoerucin 
cholesterol 
phosphatidyl inositol 
phosphatidyl serine 
dipalmitoyl phosphatidyl choline 
bacterial phosphatidyl ethanolamine 
phosphatidyl ethanolamine 

The effect of dielectric polarization on a charge near an interface, 
commonly referred to as the image force, on the ionic permeability of 
thin membranes has been shown to be important in lipid bilayer membranes 
[1, 19, 20, 28] and in ultrathin polymeric reverse osmosis membranes [2]. 
Although previous theoretical treatments of electrodiffusion have repre- 
sented ions as point charges for image force calculations [19, 28], this 
assumption is questionable for large ions such as ion-carrier complexes 
and organic ions within lipid bilayer membranes since these structures 
are typically less than 50 • thick. Andersen and Fuchs [1] recognized 
this point, although they employed the point charge image force in ana- 
lyzing the current-voltage characteristic of tetraphenylboride transport. 
The finite size of an ion manifests itself in electrostatic interactions through 
the property of polarizability, a quantity which depends on chemical 
structure as well as ionic dimensions. Polarizability has been shown to be 
significant in describing specificity effects among ions of the same charge 
for ionic conductivity in polymers [3] and zeolite ion exchangers [4] and 
association equilibria between metal ions and complexing agents such as 
valinomycin and the macrotetralide actins [24, 33]. Parsegian [29] and 
Tredgold [38] have also studied the effects of ionic size on the equilibrium 
properties of ionic partition and hydration energy. 

In this communication, the importance of ionic polarizability and size 
in the electrodiffusion of single ions within lipid bilayer membranes is 
considered and is shown to account for the selectivity observed in ionic 
mobilities among ion-carrier complexes and lipid-soluble ions. The 
approach herein parallels previous analyses of electrodiffusion in thin 
membranes based on Poisson's equation for determining the image force 
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which retards ionic migration and on the Nernst-Planck equation as the 
phenomenological relation between ion flux and driving forces. An ap- 
proximate solution is given for the image force, or equivalently, the po- 
tential energy barrier confronting an ion within the membrane, which 
simplifies the computations considerably and corresponds closely to the 
exact solution. To evaluate the significance of ion-specific electrostatic 
effects, theoretical calculations of ionic mobilities are carried out using 
ionic polarizability and size data reported for ions whose mobilities in 
lipid bilayer membranes are available. 

Theoretical Considerations 

Electrodiffusion in lipid bilayer membranes may be described by the 
Nernst-Planck equation, and as such, the current flux, J, for a single 
univalent ionic specie soluble in a membrane bounded by identical 
aqueous solutions is given by [-1, 9, 18, 20, 28] 

J = 2 Y C w ~  sinh (0/2) 
g 1 -~R (1) 

eOSe~O(S)d s 

~R 

where ~ is the Faraday constant, c w is the ionic concentration in the 
aqueous phase adjacent to the membrane, ~g and 1 -~R are the locations 
of the internal membrane binding sites, ~ is the ionic diffusivity computed 
using the Stokes-Einstein relation and L is the membrane width. The 
dimensionless variables for distance from the interface, 4, electric potential, 
0, and potential energy, cp, have been normalized by the dimensional 
quantities L, ( R T / ~ )  and RT, respectively. 

The potential energy function within the membrane, ~0(s), may be 
resolved into a position-independent component, Pc, due to short-range 
chemical forces affecting solubility, and a position-dependent component, 
(PE(~), due to long-range electrostatic interactions [23]. The Nernst- 
Planck equation may then be written as 

2 ~ c ~  sinh (0/2) 
j - (2) 

L i-~ 
eOS eOE(S) d s 

r 

where c = c  w exp (-~Oc) is the ionic concentration at the binding sites 
within the membrane, located at ~R and 1 - ~R' Here, the term, exp ( -  (Pc), 
assumes the role of a partition coefficient. Eq. (2) implies that the membrane 
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conductivity, [(J/0) '  (RT/Y)], depends on two distinct quantities, the 
population of charge carriers in the membrane and their mobility under 
the influence of an external force. Mobility is usually reported as an electro- 
diffusion rate constant, k, which in the limit of low applied voltages 
(~,~0) is 1 

@ 1 
k - (3) 

L 2 1 - ~ a  
eOe(S)ds 

~R 

This form will be used subsequently to interpret available ion transport 
data. 

Electrostatic Effects 

The potential energy barrier associated with image forces attracting 
an ion within a thin membrane toward the interfaces may be obtained by 
solving Poisson's equation for the electrical potential using simple di- 
electric models for the membrane, the surrounding solutions and the ion. 
The membrane is idealized as a homogeneous film having a dielectric 
constant, e, of 2.1, while the surrounding solutions are assumed to be 
either perfect conductors [19] or dielectric regions having a dielectric 
constant of 78.1 [28]. An ion having a charge, Q, and polarizability, c~, 
is represented by an electrostatically equivalent spherical conductor 
having a radius, A, where according to B6ttcher [8], ~ = A  3. Since ions 
are not perfectly polarizable, the actual dimensions of any given ion will 
always exceed A. Nonspherical ions may be represented as spheres for 
electrostatic calculations provided that the mean polarizability of the 
tensorial components is used [8]. 

The system considered is illustrated in Fig. 1 along with a dimension- 
less cylindrical coordinate system constructed about an axis which passes 
through the center of an ion embedded within the membrane and is 
perpendicular to the interfaces. The electrostatic potential problem 
obtained by applying Poisson's equation to the membrane (II) and sur- 
rounding solutions (I, III) becomes 

[72 @II ~ - -  4re ~ p(~, ~) (4) 
gll 

f7 2 01,,I = 0 (5) 

1 The Stokes-Einstein mobility u, given by N=uRT, is related to the electrodiffusion rate 
constant, k, as follows: u=kL2RT. 



98 R. W. Bradshaw and C.R. Robertson 
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Fig. 1. Schematic diagram of a lipid bilayer membrane showing the cylindrical coordinate 
system used in the electrostatic potential calculations 

where 

e 
# = (6) 

and the dimensionless space charge distribution is given by p - -O for 
~=~e and f=0 ,  and p = 0  for ~+~e and all f, where O=Q/e.  

The interracial boundary conditions are [-34] 

g i ~  -=~n 0~ i=I ,  III (7) 

gO~ _ &Pn i =  I, III (8) 

at ( =  0, 1. The presence of a spherical conductor requires an additional 
boundary condition, namely, that the surface of the sphere be equipotential 
[34]. Thus, for a spherical conductor positioned entirely within the mem- 
brane 

@II = constant on 22 = ~2 q_ (4 - ~Q)2 (9) 

where 2 = AlL. 
Neumcke and L~iuger [-28] solved the point charge problem, Eqs. (4)-(8), 

by the method of images for dielectric surroundings, whereas Haydon 
and Hladky V19] considered the surroundings to be perfect conductors 
in which case the dielectric constant is essentially infinite. Only a small 
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Fig. 2. Geometrical construction considered for examining the condition of equipotentiality at 
the surface of a charged spherical conductor polarized by an external charge 

difference (~5  ~) is observed between the image potential calculations 
performed by these workers since in both cases the membrane dielectric 
constant is much less than that of the surroundings. The solutions obtained, 
in either instance, for the point charge problem provide the basis for 
analyzing the electrostatics of a spherical conductor ion in the following 
section. 

Results 

Exact Solution 

In the presence of a spherical conductor, the image charges arising 
from the dimensionless source charge, O, which satisfy the interracial 
boundary conditions, Eqs. (7) and (8), disturb the equipotential condition 
at the surface of the sphere, Eq. (9), thereby requiring additional compen- 
satory image charges. Before discussing the solution of the thin membrane 
problem, the mathematical procedure used herein is best illustrated by a 
simpler problem which considers the polarization of a conducting sphere 
embedded in a uniform dielectric medium. 

Let P be an arbitrary charge separated from the center of a charged 
spherical conductor by a distance, Z. Referring to Fig. 2, a charge, 0, is 
placed at a distance, 6, from the center of the sphere to restore equi- 
potentiality at the surface. At any arbitrary point, O, on the surface, 

e1~ ~-~(~2+22+226cos7)1/2 ~(Z2+22+22)~cosT)~/2 . (10) 

Following Smythe [34], let 
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then 

hence, if 

Z 

ql ~ 4  (Z 2 +22 +22Z cos 7) 1/2 ; (12) 

image charges 

P N=--fi2N-10 at ~ = - ( 2 ( N - 1 ) + r  N=1,2 ,3 . . .  (14) 

P'x=fl2NO at ~= - (2N-r  N=  1,2,3... (15) 

PN=--fi 2N 10 at ~ = 2 N - ~ e ;  N=1,2,3 . . .  (16) 

P~ = f i2No at ~ = 2 g + r  g = l ,  2, 3... (17) 

where 
/3 = - + (18) 

be placed in the surroundings to satisfy the interfacial boundary conditions 
1-28]. The images denoted by primes 1,Eqs. (15) and (17)] are not potential- 
determining for a point charge 1-28], but do affect a spherical conductor. 

The above image charges disturb the equipotential state at the surface 
of the sphere and must be compensated for by adding images as indicated 
by Eqs. (11) and (13). Subsequently, each image charge in the sphere re- 
quires new sets of images in the surroundings given by Eqs. (14)-(17), 
where ~o is replaced by the location of the image charge, 0, in the sphere to 
satisfy the interfacial boundary conditions. This method of successive 
approximations may be pursued to satisfy both interracial and sphere 
surface boundary conditions to the desired level of accuracy. The calcula- 
tion is convergent since the requisite image charges become progressively 
smaller in magnitude and those in the surroundings progressively recede 
from the sphere as well. 

If S(~) is the sum of all the image charges placed within the sphere 
located at position 4, the image force, F, acting on the spherical ion is 1-34] 

F #0 dS 
(19) 

e (RT~ 28n2 d~" 

0 = - P V z  ( 1 3 )  

the potential on the surface is independent of 7. 
A procedure for solving Eqs. (4)-(9) may be formulated based on the 

foregoing algorithm and the corresponding solution for a point charge 
ion in a thin membrane. An ion located at (4, if)= (~Q, 0) requires that the 
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The potential energy is easily obtained by integrating Eq. (19) with the 
result that 

~0 {S(~)_ S(~R) } (20) 
(PE(~Q) = 28ii,~ 

where ~R, the ion binding site location, is taken as the reference position 
for potential energy [-18, 20]. 

The above procedure for calculating potential energy profiles may be 
implemented on a digital computer and will be referred to subsequently as 
the exact solution of Eqs. (4)-(9). An approximate solution for the image 
potential, (p~, would be more convenient for data analysis and parametric 
studies of ion transport in lipid bilayer membranes. The exact solution, 
therefore, is regarded as the measure against which approximate potential 
energy calculations will be tested. 

Approximate Solution 

As an initial simplification, suppose that the only interfacial boundary 
condition considered pertains to the interface between the sphere and an 
arbitrary image charge in the surroundings, PN, [Eqs. (14)-(17)] and that 
the other interface is neglected. The equipotentiality condition at the 
surface of the sphere is retained. The first step in this approximation to the 
electrostatics problem is illustrated in Fig. 3. The compensatory image 
charge, 01 =--PN2/ZN, is located within the sphere at 41 =~O--Z2/XN to 

P, p, 

XN 

Fig. 3. Locations of selected image charges for a charged spherical conductor near the interface 
separating two dissimilar dielectric regions 



102 R.W. Bradshaw and C.R. Robertson 

satisfy the equipotential surface condition. Since the far interface (4 = 1 for 
the situation shown) is neglected, only one image charge, Pu, 1, is needed 
to satisfy the interracial conditions at ~---0 where PN, ~ = -f101 [28]. 

Further corrections to both the interracial and surface boundary 
conditions follow from the method of successive approximations devel- 
oped for the exact solution and may be stated in terms of the following 
recursion relations 

0~ t+ l -  ~Q+~MPN, M (21) 

PN, M =  - -  f lOM (22) 

,t 
~M+I =~Q ~Q+~n (23) 

with the initial conditions, 

Eqs. (21)-(23) reduce to 

fl M + l 

PN, o = PN (24) 

~o = ZN - ~Q. (25) 

0~t+~ ~ 0M-1 2 0~ t .  (26) 

By noting the similarity between Eq. (26) and the hyperbolic identities 

sinh(M + 1) y + sinh(M - 1) y = 2 cosh y sinh M y (27) 

cosh(M + 1) y + cosh(M - 1) y = 2 coshy cosh M y  (28) 

and by assigning 
coshy = ~Q/Z (29) 

then the form of the general solution becomes 

- -  = x 1 c o s h  M y + x 2 sinh My.  (30) 
0~t 

Evaluation of the constants, x 1 and x 2, from the initial conditions gives 

xl - Pu (31) 

fl Z~ - ~e_ (32) 
X 2 -  PN 2 sinhy " 
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Accordingly, the total charge appearing in the sphere due to an arbitrary 
image charge, PN, from Eqs. (14)-(17) is 

~, ~ tiM- 1 sinh y 
s=  Z (33) 

~=1 ~=lcoshMysinhy+(_)~N~O.)sinhMy 

The potential energy due to a particular image of the source charge is then 
given by Eqs. (20) and (33) and the hyperbolic recursion relations, Eqs. (27) 
and (28). The total potential energy is simply the sum of the contributions 
of all the image charges in Eqs. (14)-(17). 

Considering an ion whose position is bounded by 0 < 4 <  1/2, the 
most important image charge is that nearest the source charge, P_~, 
(Eq. 14). Since P_o = -flO and Z o=2~e,  (Z_o-~e) /2=coshy and given 
the identity 

sinh(M + 1) y = sinhy cosh My + coshy sinh My, (34) 

Eq. (33) becomes 
fi~t sinhy 

S = O sinh(M + 1)y " (35) 
= 1  

The potential energy function may be obtained as indicated previously 
(Eq. 20). This result corresponds to a membrane which is semi-infinite in 
the positive ~ direction. It may be shown to reduce to the analogous result 
of Neumcke and Liiuger [-28] for a point charge residing in a semi-infinite 
membrane (Eq. 27 of their paper) as 2 approaches zero. This result is also 
presented by Smythe [-34]. 

If the next nearest image charge, P1, is included in the potential energy 
computation, the result is 

i s nh Y l sinh y2 
S= OM,2,__1,_3-'/~t [sinh(M-+l)Yl sinh(M+ 1)Y2J (36) 

where coshy 1=~Q/2 and coshyz=(1-~Q)/2 since Pl is the reflection of 
the ionic charge about the interface at ~ = 1. Eq. (36) is symmetrical about 
the mid-plane of the membrane as the nature of the problem dictates and 
is therefore a significant improvement over Eq. (35). Hereafter, Eq. (36) 
will be referred to as the approximate solution. 

Numerical Calculations 

Potential energy calculations using the exact solution are compared 
with the approximate solution (Eq. 36) and those for a semi-infinite 
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Table 1. Comparative electrostatic potential energy calculations 

Position (3) 

0.1 0.2 0.3 0.4 0.5 

Exact 12.94 26.02 29.26 30.49 30.83 
Approximate 12.89 25.84 29.01 30.20 30.52 
Semi-infinite 12.95 26.14 29.63 31.24 32.18 

L=40~.; A = 2 ~ ;  {RL=3 ~; ~:1,ili--+ ~0. 

membrane (Eq. 35) in Table 1 for typical values of membrane and ionic 
parameters. The semi-infinite membrane values differ by about 10 ~o from 
the exact value while the approximate solution is always within about 1 ~o 
of the exact result. Evidently, the approximate solution, based on only 
the two image charges nearest the ion, is an accurate substitute for the 
exact solution. Subsequent potential energy calculations will employ the 
approximate solution exclusively. 

In agreement with the results of Neumcke and Ltiuger [28] for a point 
charge, the potential energy function is relatively insensitive to the mem- 
brane width for values characteristic of lipid bilayer membranes. To cite 
a representative case, an ion having a polarizability of 8/~3 (A = 2 ~) and 
bound an equal distance from the interface in each of several membranes 
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Fig. 4. Electrostatic potential energy profiles of polarizable univalent ions for several values 
of the radius of the equivalent charged spherical conductor. L = 40 ,~; ~R L = 4 ~ ; q, m ~ :~ 
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Fig. 5. The effect of ionic polarizability on the maximum value of the electrostatic potential 
energy barrier. L = 40 •; ~-R L = 4 A; eI,lll ~ ~ 

such that ~R L= 3 A, yields peak or maximum potential energies, (p~, of 
28.7, 30.5, 31.6 and 32.3 for membrane widths of 30, 40, 50 and 60•, 
respectively. 

Polarizability, expressed as the radius of the equivalent spherical 
conductor, affects the peak potential energy quite markedly as shown in 
Fig. 4. Polarizability will therefore significantly influence ion transport 
rates in bilayer membranes since the potential energy appears as an 
exponential coefficient in the Nernst-Planck equation. The asymptotic 
case of A = 0, corresponding to a point charge ion, concurs with the results 
of Neumcke and L~iuger [28]. 

The relationship between maximum potential energy, q~, and polar- 
izability, e, is depicted in Fig. 5. The linearity of this graph is a consequence 
of two energetic contributions to the total electrostatic potential energy. 
The (p* intercept at e = 0  corresponds to the point charge problem and 
represents the energy required to overcome the image forces attracting 
the central ionic charge toward the interfaces. The slope is associated with 
the polarization energy arising from the action of the image charges in the 
surroundings on the spherical conductor. Recalling that the polarization 
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energy of a body in an electrical field of strength, E, is [8] 

it follows that 

(/)polarization-- 2 L ~- E2 (37) 

(E2[ 2 (P~-- * + ~R - E  1r q~[~= o 2L 3 ~= (38) 

Eq. (38) provides a simple correlation between peak potential energy and 
ionic polarizability and thus further reduces the computational require- 
ments when comparing ion transport phenomena for a large number of ions. 

Discussion 

The purpose of considering electrostatic effects due to ionic polar- 
izability on ion transport phenomena in lipid bilayer membranes, in 
addition to charge, is to provide a basis for interpreting experimentally 
measured ionic mobilities, given by the electrodiffusion rate constant, k. 
The theoretical potential energy calculations presented in the preceding 
section permit ionic mobilities to be determined for ions whose polar- 
izabilities are known so that comparisons may be made with electro- 
diffusion measurements in lipid bilayer membranes. Published data on 
ionic mobilities in bilayer membranes are presented in Table 2, together 
with the pertinent characteristics of the ions and membranes studied. 

A striking feature of Table 2 is the great disparity among mobilities 
for these ions of similar size and shape. Furthermore, the usual inverse 
relationship between mobility and hydrodynamic radius given by the 
Stokes-Einstein equation for viscous fluids is reversed in the case of the 
carrier-cation complexes in comparison with the lipid-soluble ions, tetra- 
phenylboride (TPhB-) and dipicrylamine (DPA-). However, the inverse 
relationship between electrodiffusion rate constants (k) and ionic polar- 
izabilities (e), for the hydrodynamically similar lipid-soluble ions, TPhB-,  
DPA- ,  and carbonyl cyanide m-chlorophenylhydrazone (CCCP-), is 
consistent with the previous discussion concerning the increase in height 
of the image potential energy barrier to electrodiffusion which results 
from an increase in ionic polarizability. 2 

The influence of polarizability on ionic mobility may be evaluated 
quantitatively by rewriting Eq. (3) in a form which explicitly identifies 

2 Increasing ionic polarizability decreases the Born energy which primarily affects ionic 
partition rather than mobility. 
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Table 2. Ionic properties and electrodiffusion rate constants for polarizable ions in lipid bilayer membranes 

Ion Shape, Size Polari- k Membrane L 
zability (sec 1) (•) 
(A ~) 

TPhB Sphere [13] 44.5 [17] 9 [23] di(18:l)-PC 42 [11] 1 
r = 4.2 ~"  48 [33] 

TPhB-  see above see above 2.5 x 102 [1] BPE 30 [1] 1 
DPA Ellipsoid 38.4b 3.8 x 102 [23] di(18: 1)-PC see above 1 

r=3 ,5 •  35.2 [16] 
CCCP Cylinder 23 b 4.3 x 103 [27] egg PC-CHL 47 [26] 3 [22] 

r = 2 . 5 A  (1:1) 10 [10] 
h=SA 

Trinactin-NH 2 Sphere [33] 75 b 1.5 x 104 [21] GMO 33 ~ [12] 1 [10] 
r = 6 . 2 A  c 
r = 4 A  d 

Trinactin-K § see above see above 2.3 x 104 [21] GMO see above  see above 
Trinactin-NH2 see above see above 5.0x 103 [37] GMO 48 f [12] 1 [10] 
Trinactin-NH2 see above see above 8.0 x 103 [5] GMO 48 r [12] 1 [10] 
Trinactin-NH~- see above see above 4.0 • 10 3 [5] GMER 56 g 1 (est.) 
Valinomycin-K + Cylinder [33] 140 b 1.5 x 10 '~ PI, PS 55 [35] 1 

r = 7 . 5 A  [15, 36] 
h = 1 2 A  

Stokes radius in methanol. 
b Estimated from Ref. [7]. 
~ Crystal radius from Ref. [33]. 
d Stokes radius in acetonitrile from Ref. [31]. 

n-hexadecane solvent. 
e n-decane solvent. 
g Based on di(22:l)-PC from Ref. [35]. 

the two components of the electrodiffusion energy barrier, namely the 
contribution due to electrostatic forces and that due to membrane viscosity. 
Defining the effective electrostatic potential energy barrier, q~E, to be 
given by 

1 - ~ R  

exp(4~E)= ~ e oE(s) d s  (39) 
~R 

and noting that the Stokes-Einstein diffusivity, ~, may be written as 

= ~o exp [- - AI-I, , /RT] (40) 

where AH,s is the activation energy for membrane microviscosity, then 
Eq. (3) becomes 

L ~ e x p  - R T  - ~ E  �9 (41) 
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Eq. (41) may be used to correlate the measured electrodiffusion rate 
constants, k, given in Table 2 with effective electrostatic potential energies, 
~be, obtained using Eqs. (20), (36) and (39). Although the value @o appearing 
in Eq. (41) is not known precisely, it may be expected to vary by less than 
a factor of two for the range of ionic sizes considered herein. Furthermore, 
the variance in the diffusivity of the ions due to variations in the micro- 
viscosity, r/, (normalized with respect to dioleoyllecithin) among the 
several membrane materials listed in Table 2 may be accounted for by 
using the Stokes-Einstein equation when comparing electrodiffusion rate 
constants, k, for different ions. As shown in Table 2, membranes for which 
this correction is significant incorporate cholesterol. For example, Cogan 
et al. [10] observed an order of magnitude increase in microviscosity for 
the mixed lipid, egg-PC-CHL, compared to the phospholipid alone, while 
for the same system Jacobsen and Wobschall [22] report a factor of three 
increase in microviscosity. Szabo [37] observed a factor of five decrease 
in the mobility of the trinactin-NH 2 complex in GMO-CHL(I : I )  mem- 
branes in comparison with GMO membranes. Therefore, the micro- 
viscosity of egg PC-CHL(1:1) membranes relative to di(18:l)-PC mem- 
branes is assumed to be five in subsequent calculations. Because of these 
differences in ionic diffusivity, 9 ,  due to variations in membrane micro- 
viscosity, it is convenient to define a modified electrodiffusion rate constant, 
k s, as follows 

k s = k/~ b p2 (42) 

where f is the membrane width normalized with respect to the average 
di(18:l)-PC width from Table 2. Combining Eqs. (41) and (42) gives 

k s = A exp( - ~bE) (43) 

where, using Eq. (40), A is given by 

A -  2 (44) 
L d i ( 1 8 : 1 ) - P C  

Note that A is a constant, since the product @t/is a constant according to 
the Stokes-Einstein relation. Consequently, Eq. (43) may be used to 
correlate electrodiffusion rate constants with theoretically determined 
values of the electrostatic potential energy barrier, 4~a. 

Values of the effective electrostatic potential energy, @~, were calculated 
using Eqs. (20) and (36) together with the values ofc~ and Lin Table 2. The 
values of ~ were calculated according to the functional group additivity 
rule using extensive tabulations from Bondi [7] except for TPhB and 
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Table 3. Electrodiffusion rate constants and theoretical energy barrier calculations for several 
polarizable ions in lipid bilayer membranes 

Ion ks (sec-i) d RL(~  ) 4~ q0~ 

TPhB [] 9 4.2 27.7 28.9 
TPhB-  �9 1.1 x 102 4.2 24.8 26.3 
DPA - zx 3.8 x 102 4.2 24.6 25.8 
CCCP - ~ 2.3 x 104 4.2 20.3 21.5 
Trinactin-NH 2 �9 8.0 x 103 5.0 20.1 21.4 
Trinactin-K + �9 1.2 x 104 5.0 20.1 21.4 
Trinactin-NH2 �9 5.7 x 103 5.0 22.5 23.7 
Trinactin-NH~ r 9.0 x 103 5.0 22.5 23.7 
Trinactin-NH2-d P- 6.2 x 103 5.0 23.2 24.3 
Valinomycin-K'.qb- 3.3 x 104 6.0 19.7 20.9 

~1~ ~lll ---+3Q' 

D P A -  for which experimental measurements are available [16, 17]. The 
surrounding solutions were assumed to be perfect conductors and as 
indicated in Table 3, the ionic binding sites were assumed to be located 
at one ionic radius within the membrane [1, 20, 28]. The values of k, r/and 
L from Table 2 were used to compute the modified electrodiffusion rate 
constant, k s, according to Eq. (42), and the relationship between k s and 
the corresponding value of the effective electrostatic potential energy 
barrier, ~b E, for each ion-membrane system considered herein is shown in 
Fig. 6. These values of k s and ~b E are presented in Table 3 as are the values 
of (p~, this latter quantity also serving to correlate the mobility data. This 
follows from the fact that the major contribution to the integrand in 
Eq. (39) can be attributed to values of cpe(s) which are close to the maximal 
value, consequently, * �9 

The correlation between the electrostatic potential energy barrier, 45E, 
and the modified electrodiffusion rate constant, ks,  shows reasonable 
agreement with the image force theory discussed herein. The solid line 
shown in Fig. 6 was obtained using a linear least-squares analysis of 
Eq. (43) with the data for k s and ~ given in Table 3. The equation of this 
line is Ink s = 29.3 -0 .96  ~b~, which indicates that the correlation is in good 
agreement with the theoretical slope of unity. 

The values of the effective electrostatic potential energy, ~bE, are 
sensitive to the location of the ion binding site, ~R. This sensitivity between 
~E and ~R may be attributed to the fact that the image force increases 
rapidly and without bound as an ion approaches the membrane/solution 
interface and thus exerts a strong influence on the magnitude of the electro- 
static potential energy given by the integral of the image force [Eqs. (19) 
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Fig. 6. The relation between the electrodiffusion rate constants of several polarizable ions 
observed hi lipid bilayer membranes and theoretical calculations of the potential energy 
barrier due to image forces. The least-squares fit to the data given by lnks=29.3-0.96q~ ~ 

and (20)]. This degree of parametric sensitivity to the choice of ~R is 
displayed by both polarizable and point charge ions and suggests that 
refinements may be necessary in the simple membrane model employed 
herein and elsewhere [1, 19, 28] in treating image effects in lipid bilayer 
membranes. One possible refinement would be to recognize the structural 
differences between the polar head groups of membranes formed from 
phospholipids and glycerolipids, respectively, by using a more detailed 
dielectric model of the membrane. 

As a further confirmation of the importance of ionic polarizability on 
electrodiffusion in lipid bilayer membranes, consider the activation energy 
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Table 4. Activation energies for microviscosity in lipid bilayer membranes 

Lipid AH,]RT Reference 

egg PC 12.0 [10], 
egg PC 13.3 [32] 
egg PC 11.5 E39] 
DPPC 16.5 [40] 
DPPC 14.8 [14] 
DPPC-CHL(1:1) 21.0 [14] 
DPPC-CHL(1:1) 10.2 [40] 
egg PC-CHL(1 �9 2:1) 8.2 [22] 
egg PC-CHL(1.5:1) 14.3 [-10] 

[22] 

l t l  

for the electrodiffusion rate constant, AHk/RT, where from Eq. (41) 

AHk = ~E ~ (45) 
RT RT " 

Benz and Stark [5] have recently reported a value of 33 for the electro- 
diffusion activation energy, AHk/RT, for the trinactin-NH 2 complex in 
GMO membranes. This value agrees very well with that computed from 
Eq. (45) using the value of ~b~ for this particular complex and membrane 
from Table 3 and the microviscosity activation energy, AH,/RT, as given 
in Table 4. These values are 22 and 13, respectively. In contrast, if an ion is 
regarded as a point charge, c~ = 0, then for the same conditions used in the 
potential energy calculations for trinactin-NH2, namely, ~RL=5.0A, 
el, em~oO, the value for the effective electrostatic potential energy is 8.5, 
which clearly underestimates the measured value of 33. 

It is apparent from the foregoing discussion that ionic polarizability 
is a significant parameter in describing the effect of image forces on ionic 
mobility in lipid bilayer membranes. The good agreement between the 
experimental values of k s and the theoretical results for ~b E according to 
ln k s=lnA-q~E indicates that the image force model discussed herein 
yields an accurate estimate of the difference between the potential energy 
barriers which confront different ions within lipid bilayer membranes. 
The fact that only moderate agreement is achieved between the correlation 
intercept, lnA=29.3 and the value of lnA computed using data in the 
literature,3 suggests that further refinements in the analysis of electro- 
diffusion in bilayer membranes may be needed. 

3 The value of l nA-13  may be computed from Eq. (44) using the values, Ldi(18:l).pc=45 •, 
r/= 1 and 2-- '  10- v cm2/sec. This value of the diffusivity is that measured in egg PC bilayers for 
the neutral molecule, pyrene [39], which is dimensionally similar to the ions considered 
herein. 
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Conclusions 

A primary goal of model membrane studies of the kind discussed 

herein is to understand the relationship between membrane structure 

and ionic permeability in a comparatively simple system about which a 

considerable amount  of information describing the structural character- 

istics of both membrane and ionic permeants exists. The ability of a 

membrane to discriminate among a variety of possible permeants is 

essentially due to two factors, the mobility and the solubility of the perme- 

ants in the membrane. This communicat ion is concerned with the relation- 

ship between ionic mobility and electrostatic polarization forces acting 

on ions in thin membranes. It is important  to recognize that the magnitude 

of the polarization forces depends to a considerable extent on the chemical 

nature of each individual ion. Using an idealized membrane model found 

useful by earlier workers, values of the potential energy barrier created 

by image forces acting on various ions due to their charge and polar- 

izability were calculated to determine ionic mobilities according to the 

Nernst-Planck equation. The agreement obtained between measurements 

of ionic mobilities in lipid bilayer membranes and theoretical predictions 

indicates that ionic polarizability is a possible origin of ionic selectivity 

in thin membranes. 
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